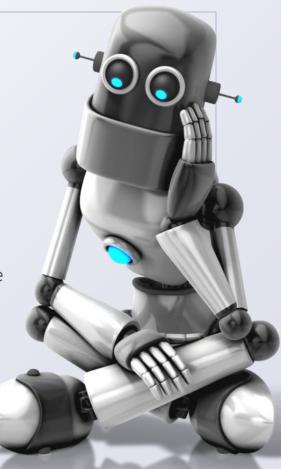


Deep Learning Foundation with Applications in Computer Vision

Course Duration (8x1/2 Days)


Introduction

In this course, various machine and deep learning algorithms will be explored. Starting from the basics of machine and deep learning, the participants will learn how to construct various machine and deep learning systems from their basic building blocks, and will understand how to apply them to real-world scenarios. Python will be used for all examples and exercises during the hands-on sessions. It is an extremely versatile programming language with clear and intuitive syntax. Most importantly, there is a large collection of Python packages or libraries that expedite the implementation of machine and deep learning systems.

Course Objectives

During this course, you will be able to:

- Explore typical building blocks of machine learning systems
- Realize different machine learning and deep learning techniques
- Discover the architecture of convolution neural networks (CNN)
- Build machine learning and deep learning systems for image classification
- Evaluate learning algorithms
- Use of various Python packages: NumPy, pandas, matplotlib, scikit-learn, TensorFlow, and Keras

Methodology

The course is presented in Socratic style lectures and workshops with interactive sessions that walk through problem examples that are commonly encountered in real-world situations. The following Python packages will be used throughout this course: NumPy, pandas, matplotlib, scikit-learn, TensorFlow, and Keras. During the hands-on session, the Anaconda distribution of Python 3 will be used for the machine learning as well as basic deep learning examples and exercises. For convolutional neural networks, Google Colaboratory will be used to train the deep learning models and the resulting models will be deployed on a typical computer system.

Who Should Attend

Developers, programmers, and engineers who would like to add an intelligent layer into their applications are encouraged to attend the course.

PART 1

Preparatory Modules (Python, Image Processing)			
Module	Title	Topics/Use Cases	
PY1	Python Quickstart & Image Processing Operations	 Key Python Libraries: Numpy, Scipy, Pandas, Matplotlib, OpenCV Basic Image Processing: Image Transformation & Manipulation Image Analysis (Morphology, Region Processing) Image Segmentation 	
PY2	Feature Extraction in Image Processing	 Low-level Feature Extraction (Points, Corners) Shape & Texture Features Higher-level Feature Representations 	

PART 2

Deep Learning Modules		
Module	Title	Topics/Use Cases
DL1	Introduction to Machine Learning & Deep Learning	 Background and Motivations for Deep Learning Current Deep Learning Advances Revisiting Traditional Machine Learning Pipelines Fundamental Concepts of Neural Networks: Weights, bias, activation functions, back- propagation, gradient optimization
DL2	Convolutional Neural Networks & Object Classification	Overview on Convolutional Neural Networks (CNN) • Basic concepts – filters, receptive field, stride, padding • Layers – convolutional, pooling fullyconnected • Setting Up/Using Pre-trained Models • Practical Considerations for Model Selection and Usage • Use Case: Wafer Map Pattern Classification

Springbot

PART 2

Deep Learning Modules			
Module	Title	Topics/Use Cases	
DL3	Data Augmentation & Imbalanced Data Issues	 Types of Transfer Learning Techniques (Bottlenecked Features, Fine-tuning) Hyper-parameter tuning – batch size, training epochs, decay rate, early stopping • Batch normalization, Regularization (L2/L1/Dropout) 	
DL4	Convolutional Neural Networks & Object Classification	 Data Pre-processing Techniques Data Augmentation Handling Imbalanced Data (Class Resampling, Hard Mining) Feasible Performance Metrics for Data Imbalance Cases 	

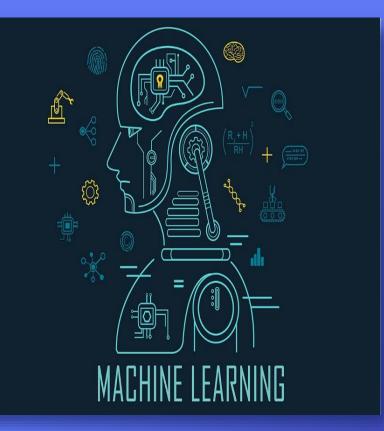
PART 2

Deep Learning Modules		
Module	Title	Topics/Use Cases
DL5	Object Detection with Deep Learning	 Overview on Object Detection Selective search & Region proposals Two-stage detectors: R-CNN and its fast variants Single stage detectors: YOLO, SSD Labeling & Annotation Use Case: Text Detection
DL6	Segmentation with Deep Learning	 Data Pre-processing Techniques Data Augmentation Handling Imbalanced Data (Class Resampling, Hard Mining) Feasible Performance Metrics for Data Imbalance Cases

Improving Deep Learning Performance

- Revisiting bias and variance
- Data Optimization
 - o Balancing a dataset
 - o Augmentation

- Hyperparameter tuning in the context of CNN
 - o Learning Rate Decay
- o Batch size, number of epochs and batch normalization
 - o Early Stopping
 - o Dropout and Regularization
- Ensembles
- Hands-on: Improving performance of defect detection


Object Localization and Segmentation

- Overview of localization, segmentation and applications
- Converting a CNN to FCN
- Sliding windows
- Non-maxima suppression
- Single-shot vs region proposal
- Loss function for segmentation

- Unpooling/upsampling/deconvolutions
- State of the art localization frameworks o RCNN
 - o SSD / YOLO
- State of the art segmentation frameworks o SegNet
 - o Encoder/decoder: U-NETs
 - o Dilated Convolutions
 - o Mask-RCNN

Machine Learning Basics

- Machine Learning
 Pipeline
- Data preparation
- Learning, Validation and Evaluation
- Bias/variance
- Hyperparameter tuning

Machine Learning Models

- Overview of supervised vs unsupervised models
- Overview of classification vs regression tasks
- Supervised methods
- Unsupervised methods
- Hands-on: House price prediction, Defect detection

Application and Use Case

- Case #1: Autonomous driving
 Case #2: Defect localization and segmentation
- Other case studies

Note!

- Object Localization and Segmentation are without hands-on training.
 With hands-on, require an additional day.
- Overview of computer vision techniques is very brief. It only covers image representation and filtering, which are required for understanding of using deep learning for computer vision.

Contact Us

Email: khenghuat.koay@gmail.com Tel: +60 12-400-1158 Website: www.eliteindigo.com

